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Aquaculture Facilities (EMA)

16 saltwater-based tanks




Application needs

Brazil - Rio Grande do Sul Ireland - Bertraghboy Bay

Eco-friendly value chains for fishery and aquaculture
Remote, unattended sites
Off-grid power supply (wind/solar)
Improved communication coverage
In-situ continuous monitoring and real-time visualisation incl. configurable trigger alerts
Monitoring of water, crop and site related variables
Water sample collection for chemicals to manage fish diseases and pests
Al-based Data analytics:
o enhance the knowledge of local producers, lower existing acceptance barriers of
aquaculture activities by the society
o predictive data modelling (forecasting)

VERY LOW-COST “loT Intelligent Sensors”; low-cost installation;
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2. Sensor Development
(traditional way)



Signal to Data (low-level/on-device)

N
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Digital Pre-Data
Raw Processing
Measurement Filtering

Post-processing

N

Feature Event
Extraction Prediction

/
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Data to Information (high-level/off-device)

Sensor Development
(traditional way)

LOW-LEVEL Processing

HIGH-LEVEL Processing

Software packages for data analysis
Cloud-based analysis

Visualisation of relevant events
Automated detection (Classification in ML)

Forecasting of future events (regression in ML)
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Sensor Calibration

Remove structural errors

O

Differences between a sensor expected output and its measured output

Standard References

o

o

Standard physical reference

m  Accelerometer: gravity is a constant 1
A calibrated sensor (more accurate)

Calibration Methods

O
O

One Point Calibration: linearity over the measurement range; useful to correct for offset errors
Two Point Calibration: linearity over the measurement range; useful to correct for slope and offset

errors
Multi-Point Curve Fitting: not linear over the measurement range requires curve-fitting
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Mussels as Aquatic Pollution Biosensors
Calibration: multi-point Non-linear Autoregressive (NAR) neural networks
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DE VARGAS GUTERRES, Bruna et al. Feasibility of visual signals on the construction of biosensors based on behavioral analysis of Perna perna mussels.

Ecological Informatics, p. 101118, 2020. ( Iﬂ ) FU RG
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A : Computer Vision Algorithm - Animal 1 B Hall Effect Sensor - Animal 1
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Multi-point calibration
Non-linear Autoregressive (NAR) neural networks
(“shallow" neural network, 3 layers)

DE VARGAS GUTERRES, Bruna et al. Feasibility of visual signals on the construction of biosensors based on behavioral analysis of Perna perna mussels.

Ecological Informatics, p. 101118, 2020. ( Iﬂ ) FU RG
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3. Sensor Development
(future)



Edge-based Al - Sensor Calibration and Event
Detection

BIG + LITTLE DATA

Patterns and Images Tutorials (SIBGRAPI-T), Rio de Janeiro, Brazil, 2019, pp. 8-21

UNIVERSIDADE FEDERAL

M. Pias, et al, "Perfect Storm: DSAs Embrace Deep Learning for GPU-Based Computer Vision," 2019 32nd IEEE SIBGRAPI Conference on Graphics, (I.I’ FU RG
~=> DO RIOGRANDE


#
#
#
#

Why edge-based computing for (remote,
in-situ) measurements

Opportunity for higher sensor sampling frequency
e Image-based data

e Sub-seasound-based data

e Datacommunication throughput limited, expensive
e On-board processing
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Sensor Development (future)

GPU-based Edge Computer

Digital Pre-Data
Sensor Raw Processing
Measurement Filtering

Feature Event
Extraction Prediction

Post-processing
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Sensor Development (future)

Feature Feature Feature Feature Feature Feature Feature Feature Hidden Hidden
Inputs maps maps maps maps maps maps maps maps units units Outputs
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Microalgae dataset:
19 classes; 29,449 images
Correia, |. et al,, "Deep Learning for Microalgae Classification," 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), 2017, pp. 20-25. I I FU RG
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Low-cost Vision-based sensors

e Low-cost vision-based sensors embedded with A.l Deep Learning Models
e Affordable GPUs - NVIDIA Jetson Nano under US$99

e Processing based on multiple operations on the same data element.
o Matrix transformations, vector and scalar operations

e TinyML software stack

e In-situsensing

Detection of micro particles

Particle size and camera resolution

How to “a take picture” in water fluid (microflow system, camera rig, visibility, lighting, etc)
Library of Pre-Trained Deep Learning models (microplastic, HABs and so forth)

Cost, accuracy, energy consumption for unattended operation

Micron-level resolution, off-the-shelf cameras used in smartphones

o O O O O O
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4. H2020 ASTRAL



ASTRAL.: Sustainable, ProfiTable and Resilient AquacuLture (2020-2024)

BG-08-2019: All Atlantic Ocean Research Alliance Flagship - [C] New value chains for aquaculture production
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IMTA labs: Scotland, Ireland, South Africa, Brazil.

Prospective IMTA lab: Argentina
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The overall objective of ASTRAL is to develop new,
sustainable, profitable and resilient value chains for
integrated multi-trophic aquaculture (IMTA)
production within the framework of existing,

emerging and potential Atlantic markets.

ASTRAL specific goals:

(1) defining and assessing IMTA production chains in open,
recirculating and flow through systems;

(2) evaluate their potential for productivity, sustainability,
profitability, consumers' trust and regulatory frameworks;

(3 design and validate innovative technology for the
monitoring of the production and environment;

(4) transfer knowledge between partners and at Atlantic level,

promoting stable business development through the
Atlantic Aquaculture Alliance (3A).



ASTRAL Technology Pool

Partners: NORCE, LEITAT, EGM, BIOCEANOR, SAMS, FURG, CSIR
Development of new sensors

loT Kits for Aquaculture

A.l. Vision Sensors

Data Analytics Platform
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THANK YOU..

Marcelo Pias
mpias@furg.br
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Aquaculture Sites

Brazil - Rio Grande do Sul

Ireland - Bertraghboy Bay

Challenges for technology deployment
1. Site area: anything between 5 to 30 hectares
2. Difficult access (boats or off-road vehicles)

3. Power supply: none in open-water; none to
limited in land-based

4. Communication coverage: limited to none
5. Climate and adverse weather conditions

6. Lack of AFFORDABLE Monitoring
Technology
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Edge-based Al - Sensor Calibration and Event
Detection

BIG + LITTLE DATA

Patterns and Images Tutorials (SIBGRAPI-T), Rio de Janeiro, Brazil, 2019, pp. 8-21
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Sensor Development (future)

DEEP LEARNING APPROACH - TRAINING

propagation Process

Backward Forward propagation yields an
propagation inferred label for each training
image

Loss function used to calculate
difference between known
label and predicted label for
each image

- Weights are adjusted during
backward propagation

Repeat the process
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